Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(5): 1086-1097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38385290

RESUMEN

BACKGROUND: ANGPTL3 (angiopoietin-like protein 3) is a circulating protein with a key role in maintaining lipoprotein homeostasis. A monoclonal antibody against ANGPTL3 is an approved and well-tolerated treatment to reduce lipoproteins in familial hypercholesterolemia homozygotes. However, the reduction of hepatic ANGPTL3 synthesis using an antisense oligonucleotide unexpectedly resulted in a dose-dependent increase in liver lipid content and circulating transaminases, resulting in the termination of the clinical trial. Meanwhile, the use of silencing RNAs remains an area of active investigation. Our study sought to investigate whether intracellular downregulation of ANGPTL3 may lead to a primary increase in neutral lipids within the hepatocyte. METHODS: We downregulated ANGPTL3 by silencing RNA in primary human hepatocytes 3-dimensional spheroids, HepG2/LX-2 3-dimensional spheroids, and in HepG2, Hep3B2, and Huh7 cultured in 2 dimensions. RESULTS: ANGPTL3 downregulation increased neutral lipids in all models investigated. Interestingly, ANGPTL3 induced lower intracellular deiodinase type 1 protein levels resulting in a reduction in beta-oxidation and causing an increase in triglycerides stored in lipid droplets. CONCLUSIONS: In conclusion, intracellular ANGPTL3 downregulation by silencing RNA led to an increase in triglycerides content due to a reduction in energy substrate utilization resembling a primary intracellular hepatocyte hypothyroidism.


Asunto(s)
Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Regulación hacia Abajo , Metabolismo Energético , Hepatocitos , Interferencia de ARN , Triglicéridos , Humanos , Proteína 3 Similar a la Angiopoyetina/genética , Proteína 3 Similar a la Angiopoyetina/metabolismo , Proteínas Similares a la Angiopoyetina/metabolismo , Proteínas Similares a la Angiopoyetina/genética , Angiopoyetinas/metabolismo , Angiopoyetinas/genética , Metabolismo Energético/genética , Células Hep G2 , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Transfección , Triglicéridos/metabolismo
2.
Liver Int ; 44(5): 1219-1232, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38375985

RESUMEN

OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health concern with no effective and specific drug treatment available. The rs2642438 minor allele in mitochondrial amidoxime-reducing component 1 (MARC1) results in an aminoacidic substitution (p.Ala165Thr) and associates with protection against MASLD. However, the mechanisms behind this protective effect are unknown. In this study, we examined the consequences of this aminoacidic substitution on protein stability and subcellular localization. METHODS: We overexpressed the human MARC1 A165 (wild-type) or 165T (mutant) in vivo in mice and in vitro in human hepatoma cells (HepG2 and HuH-7), generated several mutants at position 165 by in situ mutagenesis and then examined protein levels. We also generated HepG2 cells stably overexpressing MARC1 A165 or 165T to test the effect of this substitution on MARC1 subcellular localization. RESULTS: MARC1 165T overexpression resulted in lower protein levels than A165 both in vivo and in vitro. Similarly, any mutant at position 165 showed lower protein levels compared to the wild-type protein. We showed that the 165T mutant protein is polyubiquitinated and its degradation is accelerated through lysine-48 ubiquitin-mediated proteasomal degradation. We also showed that the 165T substitution does not affect the MARC1 subcellular localization. CONCLUSIONS: This study shows that alanine at position 165 in MARC1 is crucial for protein stability, and the threonine substitution at this position leads to a hypomorphic protein variant due to lower protein levels. Our result supports the notion that lowering hepatic MARC1 protein level may be a successful therapeutic strategy for treating MASLD.


Asunto(s)
Hígado Graso , Proteínas Mitocondriales , Oxidorreductasas , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Hígado Graso/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
4.
Cell Rep Med ; 5(1): 101352, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232700

RESUMEN

Steatotic liver disease (SLD) prevails as the most common chronic liver disease yet lack approved treatments due to incomplete understanding of pathogenesis. Recently, elevated hepatic and circulating interleukin 32 (IL-32) levels were found in individuals with severe SLD. However, the mechanistic link between IL-32 and intracellular triglyceride metabolism remains to be elucidated. We demonstrate in vitro that incubation with IL-32ß protein leads to an increase in intracellular triglyceride synthesis, while downregulation of IL32 by small interfering RNA leads to lower triglyceride synthesis and secretion in organoids from human primary hepatocytes. This reduction requires the upregulation of Phospholipase A2 group IIA (PLA2G2A). Furthermore, downregulation of IL32 results in lower intracellular type I collagen levels in di-lineage human primary hepatic organoids. Finally, we identify a genetic variant of IL32 (rs76580947) associated with lower circulating IL-32 and protection against SLD measured by non-invasive tests. These data suggest that IL32 downregulation may be beneficial against SLD.


Asunto(s)
Hígado Graso , Hepatopatías , Humanos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Triglicéridos/metabolismo , Regulación hacia Abajo/genética , Interleucinas/genética , Organoides
5.
J Hepatol ; 80(1): 10-19, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890719

RESUMEN

BACKGROUND & AIMS: Sirtuin 5, encoded by the SIRT5 gene, is a NAD+-dependent deacylase that modulates mitochondrial metabolic processes through post-translational modifications. In this study, we aimed to examine the impact of the SIRT5 rs12216101 T>G non-coding single nucleotide polymorphism on disease severity in patients with non-alcoholic fatty liver disease (NAFLD). METHODS: The rs12216101 variant was genotyped in 2,606 consecutive European patients with biopsy-proven NAFLD. Transcriptomic analysis, expression of mitochondrial complexes and oxidative stress levels were measured in liver samples from a subset of bariatric patients. Effects of SIRT5 pharmacological inhibition were evaluated in HepG2 cells exposed to excess free fatty acids. Mitochondrial energetics in vitro were investigated by high-performance liquid chromatography. RESULTS: In the whole cohort, the frequency distribution of SIRT5 rs12216101 TT, TG and GG genotypes was 47.0%, 42.3% and 10.7%, respectively. At multivariate logistic regression analysis adjusted for sex, age >50 years, diabetes, and PNPLA3 rs738409 status, the SIRT5 rs12216101 T>G variant was associated with the presence of non-alcoholic steatohepatitis (odds ratio 1.20, 95% CI 1.03-1.40) and F2-F4 fibrosis (odds ratio 1.18; 95% CI 1.00-1.37). Transcriptomic analysis showed that the SIRT5 rs12216101 T>G variant was associated with upregulation of transcripts involved in mitochondrial metabolic pathways, including the oxidative phosphorylation system. In patients carrying the G allele, western blot analysis confirmed an upregulation of oxidative phosphorylation complexes III, IV, V and consistently higher levels of reactive oxygen species, reactive nitrogen species and malondialdehyde, and lower ATP levels. Administration of a pharmacological SIRT5 inhibitor preserved mitochondrial energetic homeostasis in HepG2 cells, as evidenced by restored ATP/ADP, NAD+/NADH, NADP+/NADPH ratios and glutathione levels. CONCLUSIONS: The SIRT5 rs12216101 T>G variant, heightening SIRT5 activity, is associated with liver damage, mitochondrial dysfunction, and oxidative stress in patients with NAFLD. IMPACT AND IMPLICATIONS: In this study we discovered that the SIRT5 rs12216101 T>G variant is associated with higher disease severity in patients with non-alcoholic fatty liver disease (NAFLD). This risk variant leads to a SIRT5 gain-of-function, enhancing mitochondrial oxidative phosphorylation and thus leading to oxidative stress. SIRT5 may represent a novel disease modulator in NAFLD.


Asunto(s)
Enfermedades Mitocondriales , Enfermedad del Hígado Graso no Alcohólico , Sirtuinas , Humanos , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Genotipo , Polimorfismo de Nucleótido Simple , Hígado , Enfermedades Mitocondriales/complicaciones , Adenosina Trifosfato , Predisposición Genética a la Enfermedad , Sirtuinas/genética
6.
Clin Gastroenterol Hepatol ; 21(6): 1523-1532.e1, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35421583

RESUMEN

BACKGROUND & AIMS: Noninvasive assessment of histological features of nonalcoholic fatty liver disease (NAFLD) has been an intensive research area over the last decade. Herein, we aimed to develop a simple noninvasive score using routine laboratory tests to identify, among individuals at high risk for NAFLD, those with fibrotic nonalcoholic steatohepatitis (NASH) defined as NASH, NAFLD activity score ≥4, and fibrosis stage ≥2. METHODS: The derivation cohort included 264 morbidly obese individuals undergoing intraoperative liver biopsy in Rome, Italy. The best predictive model was developed and internally validated using a bootstrapping stepwise logistic regression analysis (2000 bootstrap samples). Performance was estimated by the area under the receiver operating characteristic curve (AUROC). External validation was assessed in 3 independent European cohorts (Finland, n = 370; Italy, n = 947; England, n = 5368) of individuals at high risk for NAFLD. RESULTS: The final predictive model, designated as Fibrotic NASH Index (FNI), combined aspartate aminotransferase, high-density lipoprotein cholesterol, and hemoglobin A1c. The performance of FNI for fibrotic NASH was satisfactory in both derivation and external validation cohorts (AUROC = 0.78 and AUROC = 0.80-0.95, respectively). In the derivation cohort, rule-out and rule-in cutoffs were 0.10 for sensitivity ≥0.89 (negative predictive value, 0.93) and 0.33 for specificity ≥0.90 (positive predictive value, 0.57), respectively. In the external validation cohorts, sensitivity ranged from 0.87 to 1 (negative predictive value, 0.99-1) and specificity from 0.73 to 0.94 (positive predictive value, 0.12-0.49) for rule-out and rule-in cutoff, respectively. CONCLUSION: FNI is an accurate, simple, and affordable noninvasive score which can be used to screen for fibrotic NASH in individuals with dysmetabolism in primary health care.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Fibrosis , Valor Predictivo de las Pruebas , Biopsia , Hígado/patología
7.
J Hepatol ; 77(3): 596-606, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35405176

RESUMEN

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disorders and has a strong heritable component. The aim of this study was to identify new loci that contribute to severe NAFLD by examining rare variants. METHODS: We performed whole-exome sequencing in individuals with NAFLD and advanced fibrosis or hepatocellular carcinoma (n = 301) and examined the enrichment of likely pathogenic rare variants vs. the general population. This was followed by validation at the gene level. RESULTS: In patients with severe NAFLD, we observed an enrichment of the p.P426L variant (rs143545741 C>T; odds ratio [OR] 5.26, 95% CI 2.1-12.6; p = 0.003) of autophagy-related 7 (ATG7), which we characterized as a loss-of-function, vs. the general population, and an enrichment in rare variants affecting the catalytic domain (OR 13.9; 95% CI 1.9-612; p = 0.002). In the UK Biobank cohort, loss-of-function ATG7 variants increased the risk of cirrhosis and hepatocellular carcinoma (OR 3.30; 95% CI 1.1-7.5 and OR 12.30, 95% CI 2.6-36, respectively; p <0.001 for both). The low-frequency loss-of-function p.V471A variant (rs36117895 T>C) was also associated with severe NAFLD in the clinical cohort (OR 1.7; 95% CI 1.2-2.5; p = 0.003), predisposed to hepatocellular ballooning (p = 0.007) evolving to fibrosis in the Liver biopsy cohort (n = 2,268), and was associated with liver injury in the UK Biobank (aspartate aminotransferase levels, p <0.001), with a larger effect in severely obese individuals in whom it was linked to hepatocellular carcinoma (p = 0.009). ATG7 protein localized to periportal hepatocytes, particularly in the presence of ballooning. In the Liver Transcriptomic cohort (n = 125), ATG7 expression correlated with suppression of the TNFα pathway, which was conversely upregulated in p.V471A carriers. CONCLUSIONS: We identified rare and low-frequency ATG7 loss-of-function variants that promote NAFLD progression by impairing autophagy and facilitating ballooning and inflammation. LAY SUMMARY: We found that rare mutations in a gene called autophagy-related 7 (ATG7) increase the risk of developing severe liver disease in individuals with dysmetabolism. These mutations cause an alteration in protein function and impairment of self-renewal of cellular content, leading to liver damage and inflammation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Proteína 7 Relacionada con la Autofagia/genética , Biopsia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Humanos , Inflamación/patología , Hígado/patología , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones
8.
Nat Metab ; 4(1): 60-75, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102341

RESUMEN

Fatty liver disease (FLD) is a growing health issue with burdening unmet clinical needs. FLD has a genetic component but, despite the common variants already identified, there is still a missing heritability component. Using a candidate gene approach, we identify a locus (rs71519934) at the Pleckstrin and Sec7 domain-containing 3 (PSD3) gene resulting in a leucine to threonine substitution at position 186 of the protein (L186T) that reduces susceptibility to the entire spectrum of FLD in individuals at risk. PSD3 downregulation by short interfering RNA reduces intracellular lipid content in primary human hepatocytes cultured in two and three dimensions, and in human and rodent hepatoma cells. Consistent with this, Psd3 downregulation by antisense oligonucleotides in vivo protects against FLD in mice fed a non-alcoholic steatohepatitis-inducing diet. Thus, translating these results to humans, PSD3 downregulation might be a future therapeutic option for treating FLD.


Asunto(s)
Susceptibilidad a Enfermedades , Hígado Graso/etiología , Hígado Graso/metabolismo , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Alelos , Animales , Biomarcadores , Línea Celular , Hígado Graso/patología , Perfilación de la Expresión Génica , Variación Genética , Genotipo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Ratones , Polimorfismo de Nucleótido Simple , RNA-Seq , Ribonucleasas
9.
Liver Int ; 42(2): 374-383, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34890093

RESUMEN

BACKGROUND & AIMS: The ultrasound-based controlled attenuation parameter (CAP) is a non-invasive tool widely validated for assessing liver steatosis across different etiologies. However, few studies, with liver biopsy available, have investigated its performance in individuals with morbid obesity. Herein, we aimed to evaluate the diagnostic accuracy of CAP in participants with morbid obesity from the MAFALDA study before bariatric surgery. METHODS: A total of 120 individuals with valid examinations within three months from bariatric surgery were included. Clinical, laboratory, FibroScan® (XL probe), and liver biopsy data were collected using standardized procedures. The overall accuracy of CAP for detecting liver steatosis was estimated by the area under the receiver-operating characteristics curve (AUROC). Optimal cut-offs were chosen at points with the highest Youden index. RESULTS: The AUROCs of CAP for detecting S ≥ S1, S ≥ S2, and S = S3 were 0.91 (95% CI 0.86-0.97), 0.83 (95% CI 0.76-0.90), and 0.86 (95% CI 0.79-0.94), respectively. The best CAP cut-offs for S ≥ S1, S ≥ S2, and S = S3 were 300 dB/m (95% CI 275-316), 328 dB/m (95% CI 296-345), and 344 dB/m (95% CI 343-352), respectively. CAP values were independently influenced by steatosis grade (estimate 20.60, 95% CI 12.70-28.40, P = 1.05 × 10-6 ). The AUROC of FibroScan-AST (FAST) score for detecting progressive non-alcoholic steatohepatitis was 0.76 (95% CI 0.66-0.86). CONCLUSIONS: In individuals with morbid obesity, CAP measured by XL probe is an accurate non-invasive tool for grading liver steatosis. Measurement of liver fat content by CAP may help identify those eligible for bariatric procedures and estimate the effect of bariatric surgery on hepatic steatosis. LAY SUMMARY: The ultrasound-based controlled attenuation parameter (CAP) by using the XL probe has an excellent performance for grading liver steatosis among individuals with morbid obesity. CAP may represent an accurate tool for the non-invasive assessment of liver steatosis among individuals with morbid obesity before and after bariatric surgery.


Asunto(s)
Cirugía Bariátrica , Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Biopsia , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad Mórbida/complicaciones , Obesidad Mórbida/cirugía , Curva ROC
10.
Gastroenterology ; 160(5): 1634-1646.e7, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33347879

RESUMEN

BACKGROUND & AIMS: Fatty liver disease (FLD) is a growing epidemic that is expected to be the leading cause of end-stage liver disease within the next decade. Both environmental and genetic factors contribute to the susceptibility of FLD. Several genetic variants contributing to FLD have been identified in exome-wide association studies. However, there is still a missing hereditability indicating that other genetic variants are yet to be discovered. METHODS: To find genes involved in FLD, we first examined the association of missense and nonsense variants with alanine aminotransferase at an exome-wide level in 425,671 participants from the UK Biobank. We then validated genetic variants with liver fat content in 8930 participants in whom liver fat measurement was available, and replicated 2 genetic variants in 3 independent cohorts comprising 2621 individuals with available liver biopsy. RESULTS: We identified 190 genetic variants independently associated with alanine aminotransferase after correcting for multiple testing with Bonferroni method. The majority of these variants were not previously associated with this trait. Among those associated, there was a striking enrichment of genetic variants influencing lipid metabolism. We identified the variants rs2792751 in GPAM/GPAT1, the gene encoding glycerol-3-phosphate acyltransferase, mitochondrial, and rs429358 in APOE, the gene encoding apolipoprotein E, as robustly associated with liver fat content and liver disease after adjusting for multiple testing. Both genes affect lipid metabolism in the liver. CONCLUSIONS: We identified 2 novel genetic variants in GPAM and APOE that are robustly associated with steatosis and liver damage. These findings may help to better elucidate the genetic susceptibility to FLD onset and progression.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Alanina Transaminasa/sangre , Apolipoproteínas E/genética , Variación Genética , Enfermedad del Hígado Graso no Alcohólico/genética , Biomarcadores/sangre , Europa (Continente) , Exoma , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Fenotipo , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Transcriptoma
11.
Int J Mol Sci ; 21(10)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443539

RESUMEN

Chronic liver disease, with viral or non-viral etiology, is endemic in many countries and is a growing burden in Asia. Among the Asian countries, Pakistan has the highest prevalence of chronic liver disease. Despite this, the genetic susceptibility to chronic liver disease in this country has not been investigated. We performed a comprehensive analysis of the most robustly associated common genetic variants influencing chronic liver disease in a cohort of individuals from Pakistan. A total of 587 subjects with chronic liver disease and 68 healthy control individuals were genotyped for the HSD17B13 rs7261356, MBOAT7 rs641738, GCKR rs1260326, PNPLA3 rs738409, TM6SF2 rs58542926 and PPP1R3B rs4841132 variants. The variants distribution between case and control group and their association with chronic liver disease were tested by chi-square and binary logistic analysis, respectively. We report for the first time that HSD17B13 variant results in a 50% reduced risk for chronic liver disease; while MBOAT7; GCKR and PNPLA3 variants increase this risk by more than 35% in Pakistani individuals. Our genetic analysis extends the protective role of the HSD17B13 variant against chronic liver disease and disease risk conferred by the MBOAT7; GCKR and PNPLA3 variants in the Pakistani population.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/genética , Aciltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Predisposición Genética a la Enfermedad , Lipasa/genética , Hepatopatías/genética , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , Adulto , Enfermedad Crónica , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Pakistán
12.
Mol Metab ; 22: 49-61, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30772256

RESUMEN

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) is becoming a leading cause of advanced chronic liver disease. The progression of NAFLD, including nonalcoholic steatohepatitis (NASH), has a strong genetic component, and the most robust contributor is the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 encoding the 148M protein sequence variant. We hypothesized that suppressing the expression of the PNPLA3 148M mutant protein would exert a beneficial effect on the entire spectrum of NAFLD. METHODS: We examined the effects of liver-targeted GalNAc3-conjugated antisense oligonucleotide (ASO)-mediated silencing of Pnpla3 in a knock-in mouse model in which we introduced the human PNPLA3 I148M mutation. RESULTS: ASO-mediated silencing of Pnpla3 reduced liver steatosis (p = 0.038) in homozygous Pnpla3 148M/M knock-in mutant mice but not in wild-type littermates fed a steatogenic high-sucrose diet. In mice fed a NASH-inducing diet, ASO-mediated silencing of Pnpla3 reduced liver steatosis score and NAFLD activity score independent of the Pnpla3 genotype, while reductions in liver inflammation score (p = 0.018) and fibrosis stage (p = 0.031) were observed only in the Pnpla3 knock-in 148M/M mutant mice. These responses were accompanied by reduced liver levels of Mcp1 (p = 0.026) and Timp2 (p = 0.007) specifically in the mutant knock-in mice. This may reduce levels of chemokine attracting inflammatory cells and increase the collagenolytic activity during tissue regeneration. CONCLUSION: This study provides the first evidence that a Pnpla3 ASO therapy can improve all features of NAFLD, including liver fibrosis, and suppress the expression of a strong innate genetic risk factor, Pnpla3 148M, which may open up a precision medicine approach in NASH.


Asunto(s)
Lipasa/genética , Cirrosis Hepática/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Oligonucleótidos Antisentido/genética , Fosfolipasas A2 Calcio-Independiente/genética , Animales , Femenino , Silenciador del Gen , Humanos , Lipasa/metabolismo , Cirrosis Hepática/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oligonucleótidos Antisentido/metabolismo , Fosfolipasas A2 Calcio-Independiente/metabolismo
14.
PLoS One ; 10(4): e0120099, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25897955

RESUMEN

The precursors of atherogenic dyslipidemia (AD) are not well defined. Therefore, we investigated 62 non-obese, non-diabetic AD and 221 normolipemic children. Anthropometric parameters, blood pressure and biochemical measures were obtained in index children, their parents and all available siblings. The heritability (h(2)) of anthropometric and biochemical traits was estimated by SOLAR. Rare and common variants in APOA1 and LPL genes were screened by re-sequencing. Compared to normolipemic, AD children showed increased body mass index, waist circumference, plasma glucose, insulin, ApoB, HOMA-IR, hs-CRP and lower adiponectin (p<0.001 for all). Metabolic syndrome was present in 40% of AD while absent in controls. All traits (except adiponectin and hs-CRP) showed a strong familial aggregation, with plasma glucose having the highest heritability (89%). Overall, 4 LPL loss-of-function mutations were detected (p.Asp9Asn, p.Ser45Asn, p.Asn291Ser, p.Leu365Val) and their cumulative prevalence was higher in AD than in control children (0.073 vs. 0.026; P=0.038). The LPL p.S447* gain-of-function mutation, resulted to be less frequent in AD than in control children (0.064 vs. 0.126; P=0.082). No variant in the APOA1 gene was found. Our data indicate that AD is a rather common dyslipidemia in childhood; it associates with metabolic abnormalities typical of insulin resistant state and shows a strong familial aggregation. LPL variants may contribute to the development of AD phenotype.


Asunto(s)
Apolipoproteína A-I/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Biomarcadores/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Lípidos/sangre , Lipoproteína Lipasa/genética , Adolescente , Apolipoproteínas B/genética , Aterosclerosis/patología , Glucemia/metabolismo , Índice de Masa Corporal , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Niño , Preescolar , Dislipidemias/patología , Femenino , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/patología , Mutación/genética , Obesidad/complicaciones
15.
J Lipid Res ; 54(12): 3481-90, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24058201

RESUMEN

Angiopoietin-like 3 (ANGPTL3) regulates lipoprotein metabolism by modulating extracellular lipases. Loss-of function mutations in ANGPTL3 gene cause familial combined hypolipidemia (FHBL2). The mode of inheritance and hepatic and vascular consequences of FHBL2 have not been fully elucidated. To get further insights on these aspects, we reevaluated the clinical and the biochemical characteristics of all reported cases of FHBL2. One hundred fifteen FHBL2 individuals carrying 13 different mutations in the ANGPTL3 gene (14 homozygotes, 8 compound heterozygotes, and 93 heterozygotes) and 402 controls were considered. Carriers of two mutant alleles had undetectable plasma levels of ANGPTL3 protein, whereas heterozygotes showed a reduction ranging from 34% to 88%, according to genotype. Compared with controls, homozygotes as well as heterozygotes showed a significant reduction of all plasma lipoproteins, while no difference in lipoprotein(a) [Lp(a)] levels was detected between groups. The prevalence of fatty liver was not different in FHBL2 subjects compared with controls. Notably, diabetes mellitus and cardiovascular disease were absent among homozygotes. FHBL2 trait is inherited in a codominant manner, and the lipid-lowering effect of two ANGPTL3 mutant alleles was more than four times larger than that of one mutant allele. No changes in Lp(a) were detected in FHBL2. Furthermore, our analysis confirmed that FHBL2 is not associated with adverse clinical sequelae. The possibility that FHBL2 confers lower risk of diabetes and cardiovascular disease warrants more detailed investigation.


Asunto(s)
Hipobetalipoproteinemias/sangre , Hipobetalipoproteinemias/genética , Lípidos/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/sangre , Angiopoyetinas/genética , Enfermedades Cardiovasculares/genética , Niño , Estudios de Cohortes , Hígado Graso/genética , Regulación de la Expresión Génica , Heterocigoto , Homocigoto , Humanos , Lipoproteína(a)/sangre , Persona de Mediana Edad , Mutación , Adulto Joven
17.
Arterioscler Thromb Vasc Biol ; 33(7): 1706-13, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23661675

RESUMEN

OBJECTIVE: Angiopoietin-like 3 (Angptl3) is a regulator of lipoprotein metabolism at least by inhibiting lipoprotein lipase activity. Loss-of-function mutations in ANGPTL3 cause familial combined hypolipidemia through an unknown mechanism. APPROACH AND RESULTS: We compared lipolytic activities, lipoprotein composition, and other lipid-related enzyme/lipid transfer proteins in carriers of the S17X loss-of-function mutation in ANGPTL3 and in age- and sex-matched noncarrier controls. Gel filtration analysis revealed a severely disturbed lipoprotein profile and a reduction in size and triglyceride content of very low density lipoprotein in homozygotes as compared with heterozygotes and noncarriers. S17X homozygotes had significantly higher lipoprotein lipase activity and mass in postheparin plasma, whereas heterozygotes showed no difference in these parameters when compared with noncarriers. No changes in hepatic lipase, endothelial lipase, paraoxonase 1, phospholipid transfer protein, and cholesterol ester transfer protein activities were associated with the S17X mutation. Plasma free fatty acid, insulin, glucose, and homeostatic model assessment of insulin resistance were significantly lower in homozygous subjects compared with heterozygotes and noncarriers subjects. CONCLUSIONS: These results indicate that, although partial Angptl3 deficiency did not affect the activities of lipolytic enzymes, the complete absence of Angptl3 results in an increased lipoprotein lipase activity and mass and low circulating free fatty acid levels. This latter effect is probably because of decreased mobilization of free fatty acid from fat stores in human adipose tissue and may result in reduced hepatic very low density lipoprotein synthesis and secretion via attenuated hepatic free fatty acid supply. Altogether, Angptl3 may affect insulin sensitivity and play a role in modulating both lipid and glucose metabolism.


Asunto(s)
Angiopoyetinas/deficiencia , Ácidos Grasos no Esterificados/sangre , Hipobetalipoproteinemias/enzimología , Resistencia a la Insulina , Lipoproteína Lipasa/sangre , Adulto , Anciano , Análisis de Varianza , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/genética , Biomarcadores/sangre , Glucemia/análisis , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Regulación hacia Abajo , Femenino , Heterocigoto , Homocigoto , Humanos , Hipobetalipoproteinemias/sangre , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/fisiopatología , Insulina/sangre , Italia , Modelos Lineales , Lipasa/sangre , Lipoproteínas LDL/sangre , Masculino , Persona de Mediana Edad , Mutación , Triglicéridos/sangre , Regulación hacia Arriba
18.
Gene ; 493(2): 278-81, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22166542

RESUMEN

Type 2 diabetes is characterized by an inadequate pancreatic beta-cell response to the progressive insulin resistance. Its pathogenesis is complex and has been connected with a state of preclinical chronic inflammation. Vasoactive intestinal peptide (VIP) and its receptors play a relevant role in the homeostasis of insulin secretion as well as in the control of inflammation. In particular, VIP receptor 1 (VPAC1) has been found to be down-modulated during inflammation, and to be associated with several diseases. The objective of this study was to compare the distribution of SNPs mapping in the VIP receptor 1 gene in cases with type 2 diabetes and matched controls. Seven hundred cases with type 2 diabetes (423 males and 277 females) and 830 random controls (419 males and 411 females) were analyzed for the distribution of three common SNPs mapping in the VPAC1 gene. The results show a significantly different genotype distribution of the SNP rs9677 in the 3'-UTR of VPAC1 in female cases with type 2 diabetes compared to gender-matched controls (ptrend=6×10(-4)). The rs9677 CC genotype confers the highest risk (OR: 2.1) and correlates with worse clinical parameters such as higher level of total cholesterol, higher LDL/HDL ratio and a higher HbA1c concentration. The genetic association reported here indicates that VIP/VPAC1 signaling can be a relevant pathway in the pathogenesis of type 2 diabetes in females suggesting that at least some aspects of the genetic predisposition to this disease can be gender-specific.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/genética , Caracteres Sexuales , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Transducción de Señal/genética
19.
Am J Physiol Endocrinol Metab ; 301(5): E901-11, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21810932

RESUMEN

Ectonucleotide pyrophosphate phosphodiesterase (ENPP1) has been shown to negatively modulate insulin receptor and to induce cellular insulin resistance when overexpressed in various cell types. Systemic insulin resistance has also been observed when ENPP1 is overexpressed in multiple tissues of transgenic models and attributed largely to tissue insulin resistance induced in skeletal muscle and liver. Another key tissue in regulating glucose and lipid metabolism is adipose tissue (AT). Interestingly, obese patients with insulin resistance have been reported to have increased AT ENPP1 expression. However, the specific effects of ENPP1 in AT have not been studied. To better understand the specific role of AT ENPP1 on systemic metabolism, we have created a transgenic mouse model (C57/Bl6 background) with targeted overexpression of human ENPP1 in adipocytes, using aP2 promoter in the transgene construct (AdiposeENPP1-TG). Using either regular chow or pair-feeding protocol with 60% fat diet, we compared body fat content and distribution and insulin signaling in adipose, muscle, and liver tissues of AdiposeENPP1-TG and wild-type (WT) siblings. We also compared response to intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT). Our results show no changes in Adipose ENPP1-TG mice fed a regular chow diet. After high-fat diet with pair-feeding protocol, AdiposeENPP1-TG and WT mice had similar weights. However, AdiposeENPP1-TG mice developed fatty liver in association with changes in AT characterized by smaller adipocyte size and decreased phosphorylation of insulin receptor Tyr(1361) and Akt Ser(473). These changes in AT function and fat distribution were associated with systemic abnormalities of lipid and glucose metabolism, including increased plasma concentrations of fatty acid, triglyceride, plasma glucose, and insulin during IPGTT and decreased glucose suppression during ITT. Thus, our results show that, in the presence of a high-fat diet, ENPP1 overexpression in adipocytes induces fatty liver, hyperlipidemia, and dysglycemia, thus recapitulating key manifestations of the metabolic syndrome.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo Energético/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/fisiología , Pirofosfatasas/genética , Pirofosfatasas/fisiología , Tejido Adiposo/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/fisiología , Hígado Graso/etiología , Hígado Graso/genética , Femenino , Trastornos del Metabolismo de la Glucosa/etiología , Trastornos del Metabolismo de la Glucosa/genética , Humanos , Hiperlipidemias/etiología , Hiperlipidemias/genética , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/etiología , Síndrome Metabólico/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología
20.
PLoS One ; 2(9): e882, 2007 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-17849011

RESUMEN

BACKGROUND: It is recognized that the ability of adipose tissue to expand in response to energy excess, i.e. adipocyte maturation, is important in determining systemic abnormalities in glucose and lipid metabolism. Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1, also known as PC-1) has been recently reported to be involved in the pathogenesis of insulin resistance and related diseases. However, its role on adipose tissue physiology as a mechanism of systemic insulin resistance is not understood. This study was performed to evaluate whether ENPP1 is regulated during adipogenesis and whether over-expression in adipocytes can affect adipocyte maturation, a potential novel mechanism of ENPP1-related insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: ENPP1 expression was found down-regulated during 3T3-L1 maturation, and over-expression of human ENPP1 in 3T3-L1 (pQCXIP-ENPP1 vector) resulted in adipocyte insulin resistance and in defective adipocyte maturation. Adipocyte maturation was more efficient in mesenchymal embryonal cells from ENPP1 knockout mice than from wild-type. CONCLUSIONS: We identify ENPP1 as a novel mechanism of defective adipocyte maturation. This mechanism could contribute to the pathogenesis of insulin resistance in absence of obesity.


Asunto(s)
Adipocitos/citología , Hidrolasas Diéster Fosfóricas/fisiología , Pirofosfatasas/fisiología , Células 3T3-L1 , Animales , Western Blotting , Humanos , Ratones , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...